盖世电竞新加坡氟硫铝酸盐所在生物陶瓷用来集

来源:http://www.lfzhongying.com 作者:盖世电竞竞猜 人气:150 发布时间:2019-06-20
摘要:近期,中国科学院上海硅酸盐研究所研究员常江和吴成铁带领的研究团队在国际学术期刊 MaterialsToday 与 ActaBiomaterialia 分别发表综述论文。 目前临床上对于实体瘤的治疗,通常采用以手

近期,中国科学院上海硅酸盐研究所研究员常江和吴成铁带领的研究团队在国际学术期刊Materials TodayActaBiomaterialia 分别发表综述论文。

目前临床上对于实体瘤的治疗,通常采用以手术切除为主,化疗、放疗为辅的综合疗法。手术切除大部分骨肿瘤组织之后,在原发灶部位会造成大块组织缺损,超过人体自愈范围,因而需要植入组织工程支架进行诱导修复。同时,由于手术很难完全清除肿瘤细胞,为防止肿瘤复发,临床通常会借助传统化疗和放疗手段,而放疗和化疗对病人会造成很大的毒副作用。为解决该问题,中国科学院上海硅酸盐研究所研究员吴成铁与常江带领的研究团队提出构建兼具肿瘤治疗和组织再生双功能特性的3D打印组织工程支架,近期取得系列进展。

传统3D打印生物陶瓷支架主要用于骨组织工程,但在软骨再生、肿瘤治疗方面还缺乏研究。前期,中国科学院上海硅酸盐研究所研究员吴成铁与常江带领的研究团队在3D打印生物陶瓷支架用于骨-软骨再生及骨肿瘤治疗方面取得了系列研究进展(Advanced Functional Materials 2017, 27:1703117-1703130; Advanced Science 2017, 4:1700401-1700409; Biomaterials 2017, 135:85-95;NPG Asia Materials 2017, 9:e376-e389; Advanced Functional Materials 2016, 26:1197-1208; Biomaterials, 2016, 111:138-148等)。近期,该团队在前期研究基础上,在3D打印功能性生物陶瓷支架方面又取得了系列新进展。

众所周知,生物陶瓷主要用于人体硬组织的修复与替换。然而近年来,越来越多的证据表明生物陶瓷具有调节干细胞分化和调节干细胞与组织特异性细胞相互作用的生物活性,也就是说生物陶瓷不仅能用于硬组织修复,在软组织组织工程和再生医学领域也有巨大的发展潜力。与以往综述主要关注生物陶瓷的制备、特性及用于硬组织修复不同,发表在Materials Today上的综述论文主要关注细胞与生物陶瓷之间的相互作用及相关的生物学机制,特别是生物陶瓷的化学和结构信号对于干细胞微环境的影响,以及对硬组织和软组织的修复。该综述介绍了生物陶瓷释放的不同的生物活性离子对干细胞微环境和组织再生具有组合或协同作用,这将有助于设计具有多种组织修复功能的生物陶瓷。基于合适浓度的生物活性离子和特定的陶瓷表面微纳米形貌均能刺激干细胞分化和组织再生,首先提出了“基于生物陶瓷的化学和结构信号产生的生物学功能及相关作用机制对生物陶瓷进行设计,也就是通过精确控制生物陶瓷成分和结构,实现对于促进组织再生最佳的生物陶瓷”的理念。最后,对于生物陶瓷的组成和结构的复杂性,干细胞微环境的复杂性以及两者之间复杂的相互作用,提出了基于“生物材料系统生物学(biomaterials system biology)”可能是生物陶瓷未来发展的最重要的方法之一(Materials Today, 2018,

该团队采用3D打印和原位生长相结合的方式,制备了有序大孔结构生物陶瓷的支架,并在支架表面原位生长二硫化钼纳米片,赋予支架在近红外照射下迅速升温的特性。这种制备方式不仅使得二硫化钼纳米片非常稳定地依附在陶瓷支架的外层,而且可以对支架的光热性能和成骨活性进行有效调控。将支架植入肿瘤部位,结合近红外光照射进行治疗,有效抑制了肿瘤的生长,而其他对照组的肿瘤生长不受抑制。同时,体内骨修复实验表明这种复合支架保持了生物陶瓷支架原有的优良成骨活性,且证实短暂的激光照射不会影响长期的新骨再生,在骨肿瘤的治疗与修复中表现出巨大的应用潜力。目前该研究成果被自然出版集团的期刊《亚洲材料》(NPG Asia Materials, AM2016556R)接收,第一作者为在读博士生王小成。

骨关节炎是一种退行性关节疾病。关节炎疾病进程中,软骨首先受到损伤,而软骨损伤通常累及软骨下骨,进而导致骨-软骨缺损。由于软骨和软骨下骨的生物学特性不同,因此骨-软骨一体化修复极具挑战。为此,该研究团队利用溶胶凝胶法合成多元硅酸钙锂(Li4Ca4Si4O13)生物陶瓷,并通过3D打印方法制备了其多孔生物陶瓷支架,得到的硅酸钙锂支架形貌可控、大小均一,其抗压强度可以通过控制孔径大小来调控。硅酸钙锂生物陶瓷的离子产物对软骨细胞的增殖和表型的维持起积极作用,对骨髓间充质干细胞的成骨分化起显著的促进作用。同时,体内研究结果表明,硅酸钙锂生物陶瓷支架在骨-软骨缺损模型中成功地修复了骨-软骨,实现了多离子联合作用促进软骨和软骨下骨修复的效果,在骨-软骨修复领域具有良好的应用前景。相关研究成果发表于Biomaterials (2018; Doi.org/10.1016/j.biomaterials.2018.04.005) 杂志上(该论文第一作者为高级工程师陈蕾),并申请发明专利一项。

在此基础上,研究团队进一步将生物陶瓷通过3D打印方式制备成仿生人体结构的多孔复杂结构,并将其组织修复拓展到肿瘤治疗。由于交通事故、衰老、骨肿瘤等引起的骨组织缺损给人类健康和生活质量带来了巨大的危害。因此,许多研究关注于骨组织缺损修复材料的制备及设计。3D打印技术以其快速、精确、可控、个性化的制作工艺在骨组织工程中得到广泛应用,制备的三维支架提供了有利于细胞粘附和增殖的三维环境。传统的3D打印生物陶瓷支架主要用于骨组织再生,而此篇综述着重介绍了具有肿瘤治疗和骨再生功能的3D打印生物陶瓷支架的最新进展。这种功能性生物陶瓷支架在修复手术引起的骨缺损和杀灭可能残留的肿瘤细胞方面具有巨大的潜力,可达到骨肿瘤治疗的目的。该综述阐述了3D打印生物陶瓷支架的组成和结构(宏观、微观和纳米尺度)及其对力学、降解、渗透性和生物性能的影响。此外,还概述了3D打印生物陶瓷支架从骨组织再生到骨肿瘤治疗的发展趋势(ActaBiomaterialia,2018,

该团队利用多巴胺原位聚合与3D打印生物支架表面矿化的特点,在3D打印的Ca-P-Si生物陶瓷支架表面上诱导出一层自均匀组装的聚多巴胺/Ca-P纳米层,使其兼具光热抗肿瘤的疗效及修复大块骨缺损的能力。诱导后的支架表面粗糙度及亲水性的提高,以及纳米层中含有的OH、NH2-生物活性基团能够促进骨间充质干细胞粘附和增殖。其次,诱导出的纳米层能够促进Ca-P矿化,有利于营养物质的吸附,进而促进骨间充质干细胞的分化及体内成骨。同时,诱导后的支架在808nm近红外光照射下,能实现快速升温,进而利用其良好的光热效果,能有效杀死肿瘤细胞,抑制裸鼠体内肿瘤生长。该成果已经申请专利一项,相关研究成果发表在《生物材料》(Biomaterials. 2016; 111: 138-148),第一作者为在读生马红石。该工作被《今日材料》(Materials Today)以新闻亮点形式报道。最近,该团队利用活性营养元素制备了超小尺度CuCoS2 纳米晶,其光热转换效率能达到73%,具有非常优良的光热效应,能有效杀死肿瘤,同时因为Cu等活性元素可以促进血管化,可能是一类新型的兼具“骨修复”与“肿瘤治疗”的双功能生物活性纳米材料(Adv Funct Mater 2017 DOI:10.1002/adfm.201606218)。

在关节中骨-软骨界面具有极其复杂精妙的微结构,基于多种无机离子联合促进骨-软骨缺损修复的作用,该研究团队设计了不仅能对骨-软骨组织进行修复,并且能进一步对复杂的骨和软骨的界面复杂微结构进行修复的生物陶瓷支架,并对其机理作了深入研究。利用3D打印技术制备硅磷酸锶生物陶瓷支架2SiO4, SPS)。SPS生物陶瓷稳定释放的Sr 和Si 离子通过协同激活缺氧诱导因子信号通路,诱导软骨的增殖,维持其表型;在关节炎模型软骨细胞中,Sr 和Si 离子通过协同作用激活软骨细胞自噬作用,抑制细胞降解代谢活动及Indian Hedgehog 信号通路保护软骨细胞;体内研究结果显示,SPS 支架不仅实现了利用多种无机离子的共同作用对骨-软骨组织进行双向修复,并且成功地将修复效果延伸至极其复杂的骨和软骨界面结构。目前该研究相关成果发表在Theranostics (2018;8:1940-1955.) 杂志上(该论文第一作者为在读博士生邓翠君,指导导师为吴成铁)。

相关研究工作得到国家重点研发计划、国家自然科学基金、中科院先导计划、中科院前沿科学重点研发计划与上海市国际合作项目等的资助和支持。

此外,该团队还与同济大学合作,探索了细胞生物打印。该团队采用酶引发聚合温和的高强度超分子-高分子复合水凝胶与干细胞进行结合,通过原位3D打印,成功实现了干细胞在酶铰链的高强度水凝胶支架中的高效存活,为干细胞原位3D打印开辟了新方法(Chem Sci 2016;7:2748-2752)。

该团队还通过化学反应的方法将具有光热效应的CuFeSe2纳米晶原位生长在具有成骨活性的生物玻璃陶瓷支架表面上,最终获得了具有骨肿瘤消融和骨缺损修复的双功能支架。CuFeSe2属于硫族半导体材料中的一种,它的有效光热转化效率可达到82%,其组成元素Fe和Cu被报道具有很好的促进成血管和成骨的活性。体外和体内实验证明此双功能支架能够有效地通过光热杀死骨肿瘤细胞,消融骨肿瘤组织,同时能够有效地支持和促进骨间充质干细胞的粘附和增殖,最终促进新骨的形成。其相关工作发表在Biomaterials (2018, 160:92-106.) 杂志上(论文第一作者为上海硅酸盐所在读博士生党文涛,指导导师为吴成铁),同时其工作被国际期刊Materials Today作为亮点工作进行了专门的新闻报道 (Scaffold material sheds light on bone tumor therapy, 5 March 2018)。

论文链接:1 2

目前相关研究已经实现了部分技术转移转化,获得企业横向支持300余万元。相关研究工作得到了中组部青年千人计划、科技部重点研发计划、中科院青年拔尖人才以及国家自然基金支持。

该团队还针对治疗与修复承重骨缺损的应用背景,利用3D打印技术制备出具有优良力学强度的Fe-CaSiO3复合支架,可用于修复承重骨缺损。同时由于Fe存在表面等离子共振效应,赋予复合支架优良的光热性能。由于Fe离子的释放,在肿瘤细胞内部能与H2O2反应,生成活性氧,从而实现光热和ROS协同抗肿瘤,达到更好的骨肿瘤治疗效果。同时复合支架由于具有生物活性硅酸钙陶瓷相而保持良好的成骨活性。因此,Fe-CaSiO3复合支架具有修复与治疗承重骨肿瘤缺损的潜在应用价值。其相关工作发表在NPG Asia Materials (2018; DOI: 10.1038/s41427-018-0015-8)杂志上(该论文第一作者为上海硅酸盐所在读博士生马红石,指导导师为吴成铁)。

盖世电竞 1

盖世电竞 2

相关研究工作得到了中组部青年千人计划、国家自然科学基金委中德国际合作重点项目与国家重点研发计划的资助。

生物陶瓷释放的活性离子和表面微纳米形貌作用于干细胞微环境

图1. 3D打印制备的具有二硫化钼纳米片层的生物陶瓷多孔支架,支架具有优良的光热特性与成骨活性。纯陶瓷支架AKT及不同二硫化钼含量的复合支架0.05MS-AKT、0.1MS-AKT及0.2MS-AKT的形貌。

论文链接:1 2 3 4

盖世电竞 3

盖世电竞 4

报道链接

基于化学和结构信号对生物陶瓷进行设计并应用于硬组织、软组织修复

图2. 兔子股骨缺损部位植入3D打印的二硫化钼修饰的生物陶瓷支架和纯陶瓷支架八周后,在支架内部和周围形成大量新生骨组织。

盖世电竞 5

盖世电竞 6

盖世电竞 7

3D打印硅酸钙锂(Li4Ca4Si4O13)生物陶瓷支架用于骨-软骨修复示意图。Biomaterials 2018; Doi.org/10.1016/j.biomaterials.2018.04.005.

3D打印兼具骨修复与肿瘤治疗的生物陶瓷支架

图3. 依次为纯生物陶瓷支架,2mg/mL, 4mg/mL, 6mg/mL 多巴胺诱导的生物陶瓷支架照片;纯生物陶瓷和4mg/mL多巴胺诱导的生物陶瓷支架的显微照片;纯生物陶瓷支架, 4mg/mL多巴胺诱导的生物陶瓷支架的SEM结果;4mg/mL多巴胺诱导的生物陶瓷支架断面SEM以及断面能谱。

盖世电竞 8

3D打印硅磷酸锶生物陶瓷支架展示出良好的骨-软骨界面修复效果,A1-C4材料植入8周,空白对照组,TCP组, SPS组;D1-F4材料植入12周,空白对照组,TCP组,SPS组。SPS生物陶瓷支架组较空白对照组和TCP组显著促进骨-软骨及其界面的修复。Theranostics 2018;8:1940-1955.

盖世电竞 9

CuFeSe2纳米晶原位生长在3D打印生物玻璃-陶瓷支架表面的制备方法以及在骨肿瘤治疗与修复中的应用示意图。Biomaterials盖世电竞, 2018; 160:92-106.

盖世电竞 10

3D打印Fe-CaSiO3复合支架展示出优良抗肿瘤与成骨活性。NPG Asia Materials 2018; DOI: 10.1038/s41427-018-0015-8.

本文由盖世电竞发布于盖世电竞竞猜,转载请注明出处:盖世电竞新加坡氟硫铝酸盐所在生物陶瓷用来集

关键词: 盖世电竞

上一篇:您倘使都吃过,又一种虾侵袭国内湖泊

下一篇:没有了

最火资讯